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Abstract— Despite tremendous success achieved by deep
learning in the field of robotic vision, it still requires massive
amounts of manual annotations and expensive computational
resources to train a high-performance grasping detection model.
The difficulties (e.g., complicated object geometry, sensor noise)
all pose challenges for grasping unknown objects. In this
paper, self-supervised representation learning pre-training is
investigated to tackle the issues like expensive data annotation
and poor generalization to improve visual robotics grasping.
The proposed framework has two primary characteristics:
1) Siamese networks integrated with metric learning capture
commonalities between similar objects from unlabeled data in
an unsupervised fashion. 2) A well-designed encoder-decoder
architecture with skip-connections, fusing low-level contour
information and high-level semantic information, enables a
spatially precise and semantically rich representation. A key
aspect of using self-supervised pre-training model is that it
alleviates the burden on data annotation and accelerates model
training. By fine-tuning on a small number of labeled data,
our method improves the baseline which does not use deep
representation learning by 9.5 points on the Cornell dataset.
Our final grasping system is capable to grasp unseen objects in
a variety of scenarios on a 7DoF Franka Emika Panda robot.
A video is available at https://youtu.be/XdOhhYD-IOE.

I. INTRODUCTION

Automatic grasping, as a fundamental skill, is essential
for both industrial and domestic robots. Currently, most in-
dustrial robotic manipulators are still based on fixed position
grasping to perform repetitive tasks. Perceiving from high-
dimensional unstructured observations, e.g., images, still
remains a challenge for robots to interact with the world
and accomplish their goals autonomously. Learning is a key
enabling technology that significantly improves the capacity
of robot perception and decision making.

Recently, learning-based approaches have drawn more and
more attention. Deep learning has revolutionized many areas,
e.g., visual recognition [1], natural language processing [2].
Convolutional neural networks have become the dominant
tool in the field of robotic vision [3]. Most approaches in
grasp detection rely on supervised learning. However, the
success of these systems depends on too much manually
labeled training data and tremendous computing resources. In
the field of visual grasping, this issue is further exacerbated
by the immense costs involved in acquiring valid grasping
annotations. Due to the uncertainties of the shape, size,
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and pose of objects, the robots will inevitably encounter
diverse types of objects when performing various tasks. Once
the shape and position of an object varies slightly, a new
annotation is often required leading to a time-consuming and
labor-intensive task. For instance, the authors [4] spent two
months collecting over 8 x 10° grasp attempts with 6 to
14 manipulators. Lenz et.al [3] applied manual annotation
for all samples in the Cornell grasp dataset. Instead, in a
fully supervised training mode, inadequate training samples
will affect the accuracy and robustness of the resulting
model. Moreover, the generalization of the model trained
with insufficient data is also limited. For example, a traffic
recognition system trained for daylight may not work prop-
erly at night [5]. As a result, inadequate grasping labeled
data in a supervised learning manner tends to lead a poor
grasping model, which has become the main bottleneck for
the application of learning-based approaches in robots.
How to utilize large amounts of unlabeled data to enhance
the generalization of visual robotic grasping model has
become a challenging problem to be addressed. Currently,
the commonly used methods for grasping detection are
to train on collected datasets or in a simulator, and then
deploy the resulting model to a real robot. Compared with
the real unstructured environments, the collected dataset is
simpler and has less noise. However, in the real world,
many factors such as the different spatial layouts, partial
occlusion between objects, and variations in camera view-
point can significantly affect the accuracy of detection. A
conclusive comprehension of improving the generalization
of grasping detection systems is still quite lacking in the
learning-based literature. Recent research advances such as
transfer learning [6], unsupervised learning [7], and domain
adaptation [8], etc, provide promising insight. Inspired by
cognitive science, researchers are more concerned with how
the neuron represents, processes, and transforms information.
Humans spend most of their time learning in an unsupervised
manner. A baby learns to recognize and classify faces, not
because he receives supervision or rewards, but seeing many
of them. Owing to recent milestones such as BERT [2],
GPT [9] in natural language processing, pre-training models
combined with representation learning capture rich domain
knowledge and encode them in the parameters of neural
networks. Representation learning works by projecting high
dimensional data to a low dimensional embedding space,
making it easier to find patterns and better understand the
features of the data. Can representational learning contribute
to visual robot grasping? We employ self-supervised repre-
sentation learning to learn well-formed data representations
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from unlabeled samples, and then use limited label data
for fine-tuning. Concretely, we use siamese networks to
maximize the similarity of the same concept under different
views where images with different data augmentation are fed
into siamese networks to minimize their distance in the latent
space.

In fact, many objects have similar components, and such
similarity-based representation can be generalized to many
types of items. For instance, although coins and bottle
caps are of distinct types, the experience of grasping coins
can be easily generalized to bottle caps. Part level area
representation is equally important. As an example, many
objects have grasping handles and the model obtained by
self-supervised learning can transfer such knowledge to other
unknown items that have similar handles in the latent space.
In this paper, we focus on incorporating self-supervised
representation learning into visual grasping detection. Our
aim is to investigate the feasibility of encoding high-level
visual representation without using labeled data, and to
better understand the semantic information to promote visual
grasping. Our approach is superior to the current state-of-the-
art grasping detection methods.

The contribution of this paper can be summarized as fol-
lows: 1) we explore self-supervised representation learning
pre-training to learn a sound representation from unlabeled
data for better performing visual robotics grasping tasks.
2) we have meticulously designed the network architecture
for the grasp detection task, which fuses the local and
global features and enables a more precise detection. 3)
we conduct extensive experiments. The results show that
pre-training with self-supervised representation learning can
greatly accelerate the training speed of the grasping model
and improve the final accuracy by 9% over the model without
deep representation learning.

II. METHOD
A. Problem Formulation

Grasping detection is the process of locating an item and
generating the grasping pose for that item. It is a significant
part of the grasping pipeline where detected grasping boxes
are usually used for subsequent high-level tasks. We consider
the problem of automatically generating grasping poses. The
widely used grasp representation is to express the graspable
region as a rectangle proposed in [3]. A grasping configura-
tion is parameterized by a 5 dimensional tuple defined as:

D

where (x,y) is the central coordinate of the grasping rectan-
gle in the image, and 6 is the rotation angle of the gripper
along the z-axis. h and w are the height and width of
the rectangle, respectively. Since the rectangle representation
does not reflect the quality of the generated grasp rectangle.
Multiple candidates have to be generated and the best among
them can then be picked, which is time-consuming.

To address the issue above, we use the grasp maps [10]
defined as

g=(z,y,0,h,w)

GZ(G,V[/,Q) ERSXHXW, (2)
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Fig. 1. Illustration of our self-supervised representation learning pipeline.
The overall training is divided into two stages. Phase 1: Observations with
different data augmentations are fed as positive samples into the siamese
network. The distance in the latent space is minimized by metric learning
between the output of the top branch encoder passed by a MLP projection
and the output of the bottom branch encoder. Phase 2 is a process of fine-
tuning with a small amount of label data. The output of the bottom branch
encoder is passed into the decoder in the grasp detection procedure.

which is a pixel-level method to describe the grasping status.
As compared to the rectangle representation, the grasp maps
augment the measure of grasp quality, and are more fine-
grained. G includes the grasp quality map @), the grasp angle
map O, and the grasp width map W. The grasping quality
map @ € R¥”*W 'is a heatmap of the same size as the input
picture and H, W are the height and width of the input image
respectively. The value of each pixel in () is a score as an
indicator to evaluate the possibility of successful grasp at that
point. All the pixel values in the grasping quality image are
clipped between 0 and 1, where a large value indicates a high
probability of successful grasping at that position. Each pixel
value in the W and © maps represents the corresponding
width and angle of the gripper at that position for grasping.
In contrast to the classical method of generating grasping
rectangle candidates, the grasp maps approach is more time-
efficient, which can directly obtain the best grasp from the
quality map, and then extract the width and angle from the
width map W and the angle map O.

B. Unsupervised Visual Representation

Human can easily learn to pick up objects. For infants,
when the appearance, position, etc. of objects varies, they
can still easily adapt to. However, it remains a challenge for
robots to cope with variations in the shape or position of
objects to perform a reliable grasp. Inspired by the intuition
that human can learn to extract the similarities of different
concepts, learn to reason about abstract representations, and
transfer the knowledge to unseen situations, we leverage self-
supervision learning to make the model learn the representa-
tion that captures the potential common inherent properties
either task-oriented or semantic.

In this paper, we employ siamese networks with weight
sharing. The transformed images are sent to the two branches
of the siamese network. For an RGB-D image x, two
correlated views 27 and x5 are acquired through different
data augmentation operators. Images obtained after data
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(a) shows our grasping system with the RGB-D camera mounted on the top of the end-effector. And the test grasping objects are randomly placed

in the workspace. (b) displays the overview of neural network architecture. Both the encoder and decoder are fully convolutional networks. (c) illustrates

the process of online grasping.

augmentation are treated as positive samples of the original
image. Then the augmented images are fed into the siamese
encoders. And augmented samples fed into the model max-
imize their similarity by a metric learning loss. The encoder
used in our architecture is denoted as f, and behind the
encoder is a MLP projection head, referred to as h. Next,
the output view of one branch transformed by the encoder
and projection head, denoted as p; &f h(f(£1)), matches
the other output vector view, expressed as zo &f f(@2).
The distance function is expressed as the negative cosine
similarity function:

D z
D (p1,22) = — = s 3)

pally 122l
where || - || means Il norm function. We utilize Eq. (5) to

minimize the representation distance of the object at different
views in the latent space.

The intuition is the fact that the semantic information
of the same type of objects under different observations
should be similar. It is desired that the model can learn
this invariance through metric learning loss. In addition, we
follow the training protocol used in [11] and use positive
samples. Similar to [12], we adopt a symmetrized loss
defined as:

L =D (p1,22) + D (p2,21), “)

where D means the distance function mentioned in Eq. (3).
h1, ho indicates the latent representation through the encoder
and projection head, while z;, zo denotes the output vector
only passing through the encoder. Moreover, to avoid a
collapsing solution, a critical component is the stop gradient
operator. Correspondingly, the loss function is modified as:

L = D (py, stopgrad(z2)) + D (p2, stopgrad(z1)),  (5)
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and in this term, zo can be regarded as a constant term
after stopgrad operation and will no longer be updated by
gradients. Stopgrad has been empirically validated in [12].

In the real world, there are a number of commonalities
between objects, even though they may be different as a
whole. For example, coins and plates belong to distinct
categories of objects, but they do have similar shapes. The
grasp configuration generated for plates is also beneficial
for grasping coins. Likewise, even if the overall shape is
not similar, learning a good representation of part area of
the objects can also allow potential generalizations to many
other items. For instance, many things have grasping handles,
and the successful detection of the handle allows the model
to transfer grasping knowledge to many unknown objects
with handles. In addition, datasets used in most previous
methods mainly consider objects in the center of pictures
without background noise. However, in real unstructured
environments, the occlusion in cluttered scenes, and different
placement of objects can significantly influence the perfor-
mance of the grasping. In this paper, we consider different
forms of data augmentation, including geometric and spatial
transformations of input images. The original image may
be randomly rotated, flipped, shifted, and cropped. The
siamese network aims to extract invariant features through
metric learning loss to allow the robots to capture invariant
representations of object pose from different viewpoints. The
metric learning loss maintains an effective representation in
the latent space by measuring the similarity among correlated
views of the same objects. The intuition behind our approach
is to leverage the self-supervised tasks to achieve “free”
annotation and then use the resulting model to make valid
predictions in real scenarios.

During the real robot grasping phase, we no longer need
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to perform data augmentation and projection head. Instead,
directly put the RGB-D image captured by the camera
into the our model and the neural network outputs the
corresponding grasp pose.

C. Neural Network Architecture

For a robotic grasping system, upon the robot observing an
object, the robotic system needs to generate grasping poses
(grasping coordinates and orientation angles), and moves its
gripper. Due to factors such as the complex geometry of
objects in the real world, it is essential for the model to
acquire a spatially precise representation of these objects
and robust to different positions. Inspired by recent work
[13], we adopt a fully convolutional network to avoid the
massive number of parameters brought by fully connected
layers. And the overall network model is an encoder-decoder
architecture, in which the encoder is composed of several
convolution layers that gradually decrease the spatial size of
feature maps. The input image is mapped to a latent space,
which is formed to abstract from a high resolution to a low
compact resolution representation. And the decoder consists
of a deconvolution neural network which decodes the latent
code into a grasping quality heatmap of the same size as
the input size. In our network structure, each convolution
layer is followed by a batch normalization layer [14] and
then through a nonlinear activation (ReLU) transformation.
The entire framework is flexible and easy to implement.
Moreover, to facilitate the flow of information in the network,
we apply skip connections which skip several layers in the
neural network and use the outputs of one layer as inputs to
the subsequent layer. Inspired by [15] [1], our model can
better fuse global information (e.g. shape of the objects)
and local information such as detailed texture of items. The
network takes in RGB-D images as input and generates
three pixel-level grasping quality, angle, and width heatmaps.
The resulting grasping point is the location with the highest
quality score in the grasping quality map. By introducing
self-supervised learning, the encoder learns a compact rep-
resentation, filtering out redundant information from input
data. Meanwhile, through a variety of data augmentation
techniques, the representation is insensitive to the rotation
and shift of objects with the help of metric learning loss. An
optimal grasp candidate is inferred from both the grasping
quality map, and the generating grasping pose used for
subsequent grasp planning. The loss is defined as the mean
square error, which compares the average difference between
predicted value and ground truth,

L=|G-qQ 6)

where G is the ground- truth, and G = (©, W, Q) is the
three heatmaps of the network output.
III. EXPERIMENTS

In this section, we conduct several experiments to demon-
strate how the method described in the previous section
can be used for visual robotics grasping. Our main focus
lies in two folds. The first concern is the quality of our
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(a) RGB images of the Cornell grasp datasets

(b) Depth images of the Cornell grasp datasets

HEENE

(c) Predicted Grasp Quality Heatmap with representation learning

(d) Predicted Grasp Quality Heatmap without representation learning

Fig. 3. A comparison of the grasp quality heatmap between methods
with and without self-supervised representation learning on Cornell grasp
dataset. The first and second rows show the RGB and depth images of the
items. The rectangles displayed in the pictures are the predicted grasping
rectangles by our method. Each pixel in the grasp quality heatmap represents
the probability of successful grasping when grasping at this position, where
a brighter color means a greater grasp success probability. On the contrary,
the darker the color, the lower the probability.

representation learning approach. Is it helpful to boost the
accuracy of grasping detection? We compare our approach
with the state-of-the-art methods on Cornell grasping dataset.
Besides, we also visualize the heat map learned by the
model with our self-supervised representation learning. The
second focus is whether the visual representation learning
facilitates the generalization of grasping models on real
robots. Moreover, in the real world, the noise, object friction,
etc in visual perception all affect the predicted grasp scaling
to real robots.

A. Dataset and Experiment Configuration

The Cornell grasping dataset is a multi-object dataset
which consists of 885 RGB-D images of 240 indoor scene
objects. Each object in the dataset is provided with multiple
human annotations for grasping. The ground-truth is pre-
sented in the form of grasp-rectangles around the objects.
The data is randomly split into training set and test set.
In terms of the accuracy evaluation metric, we utilize the
method proposed in [16]. An effective grasp needs to meet
the following rules: 1) the predicted grasp angle shows a
difference of less than 30° compared with the ground-truth
2) the Jaccard index calculated from the predicted grasp and
the ground truth is greater than 25%. The Jaccard is defined
as: J(R*,R) = %, where R* refers to the ground truth
and R represents the predicted grasp. Indeed, the Jaccard
index is an indicator that measures how well the predicted
grasp matches the human labels.
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Fig. 4. The accuracy of the approaches with and without self-supervised
representation learning on the test set in the Cornell grasp dataset during
training phase. We can observe that applying self-supervised representation
learning can accelerate the training speed of the model.

The architecture of our neural network is depicted in Fig.
2. The encoder consists of four blocks, which in turn contains
{64,128,256,512} feature channels. Each block contains
convolutions (3 x 3 kernels), ReLU activation, BN layers,
and after that, a maxpooling with stride 2. The decoder
is composed of upsampling layer that gradually restores
the output to the same size as the input dimension. The
last layer is a 1 x 1 convolution to adjust the number
of channels. Both the encoder and decoder are optimized
by using the Adam [17] optimizer with a learning rate of
le-4. And the mini-batch size is 32. The original image
size is 640 x 480. To reduce the computational cost, the
image is resized to 300 x 300. The model is trained by
standard back propagation and the entire training procedure
will be completed within 100 epochs. The skip connection
is implemented by concatenation with feature channels.

B. Analysis

Many objects that do not appear in the dataset are selected
as grasp items to test the performance of the model in
the real robot system. Each object is grasped several times
with a random placing position and orientation. Fig. 5
shows the grasping process of our approach. The camera
is placed on the robot, which is parallel to the desktop.
The items are positioned in the field of camera view. The
image captured by the camera is cropped to a square size of
300 x 300 after image processing. Immediately, the image is
fed into the neural network to generate a pixel-level grasp
quality map, and the best grasp pose is calculated. Next, the
robot moves down its end-effector until the pre-calculated
grasp pose is met. During this process, once a collision is
detected, it is considered as a failure grasp. Furthermore, the
grasping objects have different shapes and geometry, which
requires a high precision of the model. The grasping results
on unseen objects illustrate that the neural network with
representation learning can predict robust poses. We also
conduct experiments with multiple objects grasp. Despite the
fact that our model is trained on a single object, it can be well
adapted to multi-object environment with the help of self-
supervised learning. In cluttered environments, it is crucial
to characterize the shape of objects.
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Fig. 5.

Visual grasping results on unseen objects.

Fig. 3 shows that the visualization results of the grasp-
ing quality heatmap and grasping angle heatmap with and
without self-supervised representation method, respectively.
It is easy to see that the heatmap of our model is more
spatially precise. We can observe that our model can readily
learn areas that are easy for grasping, such as the edges of
objects through self-supervised representation. Meanwhile,
the model focuses on more general characteristics rather than
just individual features. On the contrary, the grasp quality
map learned by the model without representation learning
is rather coarse and sometimes even the background area
is considered to be graspable. For example, for the box
shown in Fig. 3, our method evaluates the edge of the box
with a higher grasp quality, while the model without self-
supervised learning also identifies the flat area of the box
surface as high grasp quality region. In addition, on the real
robotic manipulator, the model without self-supervised pre-
training is prone to collisions due to inaccurate grasps. It
helps the model learn a refined representation, ignoring the
noise in the input and improving the stability. Fig. 4 shows
the accuracy of the model on the Cornell dataset with and
without using self-supervised representation learning, where
the x-axis represents the training epoch, and the y-axis means
the accuracy. The experiments are conducted with 3 different
random seeds where the solid line denotes the mean of the
accuracy and shaded area indicated the variance.

C. Grasp System

The hardware platform consists of an Intel RealSense
camera D435 and a 7-DoF Franka Robot. The camera
equipped with depth sensors and RGB sensors is mounted
on the robot arm and the entire experimental workspace
is shown in Fig. 5. In each grasping process, the captured
RGB-D image by the camera is transmitted to the robot by
ROS interface and the controller performs the planning and
executes the generated grasping configuration on the object
through the end-effector. A successful grasp is achieved by
lifting the object and placing it in the specified place. All
experiments are implemented on a Desktop with a 20-core
Intel i9 CPU and an NVIDIA 3090 GPU.
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Fig. 6. The detection accuracy of different approaches on the Cornell
grasping dataset.

In our robotic system, the angular rotation of the gripper
is a scalar, in the interval of [, 7]. Likewise, the width
of gripper is in the range [0,Wmaz], and wpay is the
maximum width of gripper. Afterwards, the control module
plans a trajectory with a planner and uses the generated
grasping pose to perform an effective grasp. The overall
control system is implemented by ROS. Although, our model
performs well in most scenarios, there still exist some failure
cases. For some small and thin items, it might fail to grasp
them. In clutter environment, the gripper is often easy to
collide with other objects, resulting in a failure grasping.

Additionally, in Fig. 6, we present the grasping detection
results of our method and other state-of-the-art approaches:
the first Deep Learning method [3], Grasp-ResNets [18],
GGCNN [10], MultiGrasp [19], and Fast search [16]. On
the whole, our method achieves an accuracy of 90%, outper-
forming other approaches. In particular, 1) compared to Deep
Learning approach [3], our network achieves an improvement
of 14.4 points. And our model is more effective and flexible,
eliminating the need to generate multiple grasping candi-
dates. 2) compared to prior best performed Grasp-ResNets
[18], our method improves the accuracy by 1.1 points. Also,
different from the Grasp-ResNets with a 50 layers of residual
blocks and a 1024 nodes fully connected layer, our network
is a lightweight network and has been validated on a real
robot arm with good performance. 3) compared to GGCNN
[10], our method still outperforms by a large margin and
learns the characterized representation from unlabeled data.
Moreover, in contrast to Grasp-ResNets and MultiGrasp, we
also perform grasping on real robots.

IV. CONCLUSION

In this work, we present a novel approach for visual
grasping detection, which learns a representation that is
invariant to variations in the position, shape, etc. of objects.
The proposed method exploits a large amount of unlabelled
data and utilizes the siamese network to make the distance
of similar objects in the latent space as close as possible.
Different from the currently popular methods, our method
alleviates the need for annotation data and is simple to
implement. More importantly, our model offers a remarkable
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improvement compared to the baselines methods. Our results
provide insights into how to bridge merits of existing self-
supervised techniques with robotic grasping. In the future,
it would be interesting to investigate the integration of
self-supervision with environmental uncertainty for robotic

grasping.
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